Complex Blow-Up in Burgers’ Equation: an Iterative Approach

نویسندگان

  • Nalini Joshi
  • Johannes A. Petersen
چکیده

We show that for a given holomorphic noncharacteristic surface S ∈ C, and a given holomorphic function on S, there exists a unique meromorphic solution of Burgers’ equation which blows up on S. This proves the convergence of the formal Laurent series expansion found by the Painlevé test. The method used is an adaptation of Nirenberg’s iterative proof of the abstract Cauchy-Kowalevski theorem. AMS Numbers: 35Q53, 35R20, 47H10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Blow up and regularity for fractal Burgers equation

The paper is a comprehensive study of the existence, uniqueness, blow up and regularity properties of solutions of the Burgers equation with fractional dissipation. We prove existence of the finite time blow up for the power of Laplacian α < 1/2, and global existence as well as analyticity of solution for α ≥ 1/2. We also prove the existence of solutions with very rough initial data u0 ∈ Lp, 1 ...

متن کامل

On Some Dyadic Models of the Euler Equations

Katz and Pavlovic recently proposed a dyadic model of the Euler equations for which they proved finite time blow-up in the H3/2+ǫ Sobolev norm. It is shown that their model can be reduced to the dyadic inviscid Burgers equation where nonlinear interactions are restricted to dyadic wavenumbers. The inviscid Burgers equation exhibits finite time blow-up in Hα, for α ≥ 1/2, but its dyadic restrict...

متن کامل

Oscillation-induced Blow-up to the Modified Camassa–holm Equation with Linear Dispersion

In this paper, we provide a blow-up mechanism to the modified Camassa-Holm equation with varying linear dispersion. We first consider the case when linear dispersion is absent and derive a finite-time blow-up result with an initial data having a region of mild oscillation. A key feature of the analysis is the development of the Burgers-type inequalities with focusing property on characteristics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996